Enhancements in MWM-Array Hidden Corrosion Imaging

Dr. Neil Goldfine, Dr. Vladimir Zilberstein, Darrell Schlicker, David Grundy, Dr. Ian Shay, Dr. Robert Lyons, Tim Lovett
JENTEK Sensors, Inc., Waltham, MA 02453-7013**
Phone: 781-642-9666, email: jentek@shore.net

Ken LaCivita
SBIR Manager, Hidden Corrosion, AFRL/MLSA*
Wright Patterson Air Force Base, Dayton, OH
Phone: (937) 255-3590; email: Kenneth.LaCivita@wpafb.af.mil

November 20, 2003

*Work on Hidden Corrosion done under AFRL/MLSA SBIR.

**Work on F-15 done under WR-ALC Funding.
Outline

• MWM-Array Technology
• KC-135 Lap Joint Corrosion
• C-130 Flight Deck Chine Plate
• P-3 Orion Wing Plank
• F-15 Wing Pylon Rib
• Summary of Ongoing NDE, CBM, PHM Programs
MWM-Array Sensor with Manual Scanning Cart

- Probe
- Cart
- MWM-Array Sensor Tip
- Position encoder assembly

FA24
MWM-Array Sensor with Manual Scanning Cart

© JENTEK Sensors, Inc., 2003
Slide no. 3
7 Channel MWM-Arrays for Near-Surface Crack Detection
Measurement Grids for RAPID Data Analysis/Imaging

Example Grids for the MWM sensor on Titanium

158 kHz

6.3 MHz
Actual KC-135 Lap Joints Cut-Out from Aircraft

KC135_4 (A,B,C,D) top view

KC135_4 (A,B,C,D) bottom view

Doubler
Example GridStation Software Display

Corrosion loss regions

C-Scan

B-Scan

Data on Grid

Air Point
MWM-Array Advantages

Problem:
- Inspect KC-135 lap joint for hidden corrosion
 - Length > 200"
 - Correct for Gap, Alclad and Skin Conductivity & Lift-Off (paint)

MWM-Array Solution:
- 2 Unknowns
 - Air Calibration (10 min. setup for 1st lap joint; no setup for 2nd lap joint)
 - < 30 seconds scan time
 - < Few seconds processing time
- 3 Unknowns
 - Air Calibration
 - < 3 minutes scan time
 - ~ 10 minutes processing
- 4 Unknowns
 - Local scanning
 - Gap standards required
2-Unknown Image Assuming Equal Loss

Without Alclad in Model

With Alclad in Model

Negative loss shown in pink
Air Force Material Loss Calibration Standard as Configured for MWM-Array Demonstrations

Dimensions in Mils (1 mil = 0.001 in.)
Air Force Material Loss Calibration Standard as Configured for MWM-Array Demonstrations

B-B Cross Section

Layer one

Layer two

Dimensions in Mils (1 mil = 0.001 in.)
3-Unknown Method Results for MWM-Array Scan of KC-135 Reference Calibration Standard Panels

With 0.005 in. nominal gap across top 1 in. of entire sample length
Variable Lift-Off (e.g. Paint) and Variable Gap
Schematic of 13 Layered Model with Doubler Included for MWM-Array Hypercube Generation

13 Layer Model

MWM-Array

Alclad

Knowns
\(\sigma_1, \sigma_2, \sigma_{\text{Alclad}}, \Delta_{\text{Alclad}}, \Delta_{\text{Doubler}} \)

Unknows
\(h, \Delta_1, \Delta_2, \text{Gap} \)

Doubler Gap (Approximately only)
3-Unknown Results for Cut-Out Lap Joint

Without Doubler
- Included in Model

<table>
<thead>
<tr>
<th>Lift-Off (mils)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

With Doubler Correction

<table>
<thead>
<tr>
<th>Lift-Off (mils)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Lift-Off

<table>
<thead>
<tr>
<th>Total Remaining Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>No doubler</td>
</tr>
<tr>
<td>Doubler</td>
</tr>
</tbody>
</table>

Total Remaining Material

<table>
<thead>
<tr>
<th>Maximum loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Doubler</td>
</tr>
<tr>
<td>Doubler</td>
</tr>
</tbody>
</table>

Gap

<table>
<thead>
<tr>
<th>Maximum gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Doubler</td>
</tr>
<tr>
<td>Doubler</td>
</tr>
</tbody>
</table>
MAUS data for same region as MWM-Array data in previous slide.
1st Layer Loss vs. 2nd Layer Loss Measurement Grids at 10 kHz for a Gap of 0.011 in.

Lift-off

1st Layer

\sigma_1

\Delta_1

\Delta_{Alclad}

Gap

2nd Layer

\sigma_2

\Delta_2

\Delta_{Alclad}

\sigma_{Alclad}

\text{gap of 11 mils}
4-Unknown Results h, Δ_1, Δ_2, Gap
MWM-Array Image of Wide Area

Using Multiple MWM-Array Scan Passes
Internal Geometric Feature and Hidden Damage Imaging: C-130 Flight Deck Chine Plate

Inaccessible Side

Accessible Side

Thickness Image from Accessible Side

Surface Topology Image

Piece of Paper
Hidden Damage Imaging of C-130 Flight Deck Chine Plate

Green: < 5% Material Loss
White: 5-20% Material Loss,
Black: >20% Material loss

Green: < 20% Material Loss
White: 20-40% Material Loss
Black: >40% Material loss

Green: < 40% Material Loss
White: 40-60% Material Loss
Black: >60% Material loss

JENTEK Sensors, Inc.
Hybrid Wound/Etched MWM-Array

- Wound drive winding - permits lower frequency operation
- Etched sense element array - controlled element geometry and registration

Patents Pending
MWM-Array Scans of a Wing Plank from Navy P-3 Aircraft

Scan Direction

MWM-Array Probe

MWM-Array

Probe

t = 0.130"

.020” .010” .005”

JENTEK Sensors, Inc.
MWM-Array Hidden Metal Loss Estimates for the Three Milled Out Regions vs. the Actual Depth Measured with a Depth Gauge

Approximate total thickness at the “metal loss” locations is 0.13 in.
Corrosion Images without Paint Removal

Images of reference Al 7075-T6 coupon (left) and the more severely corroded Al 7075-T6 coupon (right) obtained at 1 MHz

Reference

Corroded coupon 3

Note: 0.004 in. insulating shim used to simulate paint layer
Scan width 12 mm, scan length 100 mm
F-15 Wing Pylon Inspection

With Bushing in Place

MWM-Array
WR-ALC Training (on Mockup) with Bushing Removed
WR-ALC Training with Bushing Removed
MWM-Array Corrosion Pitting/Crack Imaging
Example MWM-Array Ongoing NDE, CBM and PHM Programs

PHM
- Health-Monitoring for JSF
 (Navy SBIR Phase II)
- P-3 Orion Fatigue Test
 (Navy/Lockheed Martin)
- Landing Gear Stress & Fatigue
 (AF Phase II SBIR)
- Through-Wall Stress and Temperature Measurement
 (NASA Phase II SBIR)
- Coupon Testing for Multi-Site Cracking
 (Air Force/Lockheed, OEMs)

CBM
- C-130/P-3 Propeller Cold Work
 (WR-ALC)
- Coating Degradation
 (DOE Phase II SBIR)
- Grinding Rework, Repair Quality
 (Air Force, Army)

NDE
- Engine Disk Slot Inspection (CFM 56)
 (AFRL, NAVAIR)
- F-15 Wing Pylon Rib
 (WR-ALC)
- F-16 Wing Attach Fittings
 (Lockheed/Air Force)
- AV-8B/Harrier Turbine Blade Welds
 (NADEP Cherry Point)
- Lap Joint Cracks/Corrosion
 (Air Force, FAA, OEMs)
- Friction Stir Weld Quality Assessment
 (Lockheed/NASA, Eclipse Aviation)
- Deep/Hidden Damage
 (NASA Phase II SBIR)
- 2- and 3-D Buried Flaw Imaging
 (Air Force SBIR Phase II, FAA)