Early Fatigue Detection and Adaptive Life Management

Neil Goldfine, Ph.D.
President and Chief Engineer

JENTEK Sensors, Inc.
Waltham, MA

Navy Opportunity Forum, June 2013

MWM sensors and MWM-Arrays are covered by issued and pending patents, including, but not limited to: 8,237,433, 8,222,897, 8,050,883, 7,994,781, 7,876,094, 7,812,601, 7,696,746, 7,589,526, 7,533,575, 7,528,998, 7,526,964, 7,518,360, 7,467,057, 7,451,657, 7,451,639, 7,411,390, 7,385,392, 7,348,771, 7,289,913, 7,280,940, 7,230,421, 7,188,532, 7,183,764, 7,161,351, 7,161,350, 7,166,055, 7,095,224, 7,049,811, 6,995,557, 6,992,482, 6,952,095, 6,798,198, 6,784,882, 6,781,387, 6,727,691, 6,657,429, 6,486,673, 6,433,542, 6,420,867, 6,377,039, 6,351,120, 6,348,011, 6,198,279, 6,188,218, 6,156,330, 5,966,011, 5,792,086, 5,629,621, 5,990,677 and RE39,206 (other US/foreign patents issued and pending).

JENTEK Sensors, Inc.

- 20 year old company, 30+ people, 10 PhD’s
- Profitable business & growing market opportunities
- Strong Engineering-Science Team
- Extensive IP – over 50 Patents Issued
- Focus on sale of products to meet key customer needs
 - Aerospace & Defense business is growing
 - Oil & Gas business is growing fast

JENTEK’s Digital Eddy Current product line is a **U.S. Navy Standard Practice, and “**technical aspects are FAA approved**” for some commercial applications."
Production / Inspection Systems in Use

Military
- NAVAIR FRC-E use since April 2005
 - Detected large and small cracks **not detected** by conventional Eddy Current Testing (ET) and Liquid penetrant testing (LPT)
 - Low False Indication Rate, high up-time, very competitive cost

Disk Slots

Blade Dovetails

Commercial
- In use for 1000s of commercial engine inspections, “Technical Aspects FAA approved”

“Technical aspects of the method are FAA approved.”

Images © JENETEK Sensors, Inc. 2013

MWM-Array & GridStation Products Provide High Return on Investment, Improved Safety

1992: JENETEK Founded by Dr. Neil Goldfine

2000: IN7000 Series Product Launch

2004: ASTM Standard E2338-04

2003: ASNT Materials Evaluation Best Paper Award

2004: Outstanding Phase III Transition Award, Awarded by the Navy Transition Assistance Program

2006: National Tibbetts Award

2008: FAA/ATA Engine Component Inspection Technology

2012: 8200 Series Product Launch

2013: $10M of IN7000 Product Sold

> $100M Customer ROI

Images © JENETEK Sensors, Inc. 2013

Problem: Life Management of Dynamic Components

- **Rapid and Uncertain** Damage Evolution
- Existing NDT and life management approaches not sufficient
- Non-relevant defects that do not grow into fatigue cracks confuse available inspection methods
- **No framework** exists for CBM+ decision support, using advanced NDT data

Solution: *MWM-Array Mapping & Tracking and Component Adaptive Life Management Software (CALM™) with early damage detection*
CALM™ for Rotorcraft Dynamic Components and Engine Components with NDT Mapping & Tracking

<table>
<thead>
<tr>
<th>Features</th>
<th>Advantages</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuzzy HyperLattices for rapid risk assessment</td>
<td>• RUL predictions with confidence intervals
• Predicts risk of failure before next inspection in real time on NDT platform
• RUL incorporates inspection uncertainties and historical/current inspection results</td>
<td>• Immediate feedback to inspector
• Immediate scheduling of next inspection based on risk
• More accurate RUL predictions enables more cost-effective maintenance
• Improved safety margins and readiness</td>
</tr>
<tr>
<td>Early Damage Mapping & Tracking using MWM-Array</td>
<td>• Detects damage prior to rapid growth
• Tracks damage growth for historical failure analysis and for RUL/ failure risk prediction
• Reliable high resolution images of early fatigue damage with evolution tracking</td>
<td>• Enables damage growth rate computations with confidence intervals
• High repeatability
• More accurate RUL predictions enables more cost-effective maintenance
• Improved safety margins and readiness
Proven NDT method, now in-use</td>
</tr>
<tr>
<td>Fleet-wide statistics recording and individual component tracking</td>
<td>• Reliable/repeatable data for all metals
• Digital archiving and real-time updating captures damage growth statistics for populations and subpopulations of components across the fleet</td>
<td>• Improves fleet condition knowledge / enables improved maintenance planning
• Life extension through early damage detection and prompting CBM actions (e.g. repairs and surface treatments) – cost reduction
• Improved safety margins and readiness</td>
</tr>
<tr>
<td>Probability of Detection (POD) verification and real-time updating of inspection confidence intervals</td>
<td>• Verification of inspection performance
• Real-time verification that POD curve assumptions are still correct for each inspected feature</td>
<td>• Substantially improved inspection reliability, improving safety
• POD verification enables RUL estimation and risk assessment
Other NDT methods can’t provide this</td>
</tr>
</tbody>
</table>
MWM-Array Damage Mapping & Tracking for CALM

<table>
<thead>
<tr>
<th>Features</th>
<th>Advantages</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWM-Array sensor
Flexible linear-drive eddy current array</td>
<td>• Rapid scanning/inspection of wide areas and complex features
• Dramatically outperforms conventional and other advanced eddy current testing (ET) methods</td>
<td>• Technical aspects FAA approved for some commercial engine inspections
• Current US NAVY standard practice
• Faster, more accurate, more cost-effective maintenance</td>
</tr>
<tr>
<td>GridStation parallel architecture instruments
with new 8200 product launch, providing 18 to >100 channels</td>
<td>• Many fully parallel channels with extremely high fidelity impedance data over a wide frequency range
• High quality impedance data</td>
<td>• Rapid inspection and rapid data acquisition, providing frequency data with for up to four frequencies simultaneously
• Suitable for model-based inverse methods No other systems provide this quality of data</td>
</tr>
<tr>
<td>Grids (2-unknowns), Lattices (3-unknowns) and HyperLattices with hierarchical inverse methods</td>
<td>• Rapid data analysis
• Extremely reliable inspections with real-time assessment of POD performance and verification of POD assumptions
• Real-time confidence interval calculations for NDT results</td>
<td>• Only ET method providing real-time feedback to operator on coverage and lift-off (proximity of sensor to surface) for each inspected location throughout inspection region
• Improved RUL and risk prediction estimates</td>
</tr>
<tr>
<td>GridStation Software for data acquisition, visualization, archiving and decision support</td>
<td>• User friendly software interface
• Grid-based MWM-Array data visualization and high resolution imaging support
• Provides POD performance verification and statistics needed for RUL estimation and risk assessment</td>
<td>• Provides substantially improved inspection reliability, leading to improved safety and more cost-effective maintenance
• Reduces inspection burden
• Next generation software will be platform independent</td>
</tr>
</tbody>
</table>
Component, Adaptive Life Management – CALM™

CALM™ Services

Providing a Framework to
- track digital inspection data
- record events (e.g. impact damage)
- assess risk of failure before next inspection

Diagram:*

- Inspection (quality NDT & baseline)
 - Threshold: \(\hat{a}_0 \)
 - Accept: \(\hat{a}_0 \) Baseline subtraction
 - Inspection (in-service NDT)
 - Accept: \(\hat{a}_1 \)
 - Reject: rework
 - Reject: accept

Component, Adaptive Life Management Services

CALM™ Services

- **Coupon Study**
 - **Signature Library**
 - **Fracture Mechanics (Model-Based) Fuzzy HyperLattice**
 - **Rapid Uncertainty Estimator (t₁)** (using precomputed databases)

- **Set t₁**
 - **Inspection (quality NDT & baseline)**
 - **Uncertainty Assessment** • fatigue tests • metallurgy • Fracture mechanics
 - ** statistical analysis**

- **POD (ROC) Curve Generation**
 - **Crack Cluster Supervisor**
 - **Model Recalibrator (learning)**
 - **Fracture Mechanics (Model-Based) Fuzzy HyperLattice**
 - **Conditional Uncertainty Estimator**

- **Fuzzy HyperLattice**
 - **Rapid Uncertainty Estimator (t₂)** (using precomputed databases)

- **Fleet Experience** • NDT results • Failures • Expert Input

- **OEM Knowledge Component Study**
 - **Coupon Study Signature Library**

- **Rapid Uncertainty Estimator (t₁)** (using precomputed databases)

- **Inspection (in-service NDT)**
 - **Baseline subtraction**
 - **cdf(a)₁**

- **Rapid Uncertainty Estimator (t₂)** (using precomputed databases)
 - **cdf(a)₂**

- **fracture mechanics (Model-Based) Fuzzy HyperLattice**

- **Inspection (quality NDT & baseline)**
 - **threshold**
 - **accept**
 - **reject**

- **t₀**
 - **t₁**
 - **t₂**

- **Decision**
 - **rework**
 - **accept**

JENTEK® Sensors, Inc.

Coupon Study and Signature Library Generation

CALM™ Services

Coupon Study

Signature Library

Fracture Mechanics (Model-Based) Fuzzy HyperLattice

Rapid Uncertainty Estimator (t_1) (using precomputed databases)

Set t_1

POD (ROC) Curve Generation

Crack Cluster Supervisor

Fleet Experience • NDT results • Failures • Expert Input

Model Recalibrator (learning)

Fracture Mechanics (Model-Based) Fuzzy HyperLattice

Rapid Uncertainty Estimator (t_2) (using precomputed databases)

Inspection (quality NDT & baseline)

\hat{a}_0 threshold

Accept

Inspection (in-service NDT)

\hat{a}_1

Baseline subtraction

\hat{a}_0

Reject

Set t_2

Rework

Accept

Reject

\hat{a}_1

\hat{a}_0

\hat{a}_1

t_0

t_1
Coupon Testing to Build NDT Performance Statistics

Fatigue coupon test specimens machined from component

Images © JENTEK Sensors, Inc. 2013

Mapping & Tracking Damage with Validation/Verification

Averaged and Baselined Scans of Coupon 2, Back

- 7.7 mils
- 14.6 mils
- 18.3 mils
- 21.8 mils
- 23.9 mils
- 25.4 mils
- 26.2 mils

X axis (in)

Averaged and Baselined Scans of Coupon 2 Front, Channel 3, MWM-Array FA43

- 7.7 mils
- 14.6 mils
- 18.3 mils
- 21.8 mils
- 23.9 mils
- 25.4 mils
- 26.2 mils

X axis (in)

Images © JENTEK Sensors, Inc. 2013

POD Curve Generation & Statistical Analysis

CALM™ Services

Inspection (quality NDT & baseline)

Rejected

Fast Uncertainty Estimator (t_1)

Using precomputed databases

Signature Library

Fracture Mechanics (Model-Based)
Fuzzy HyperLattice

OEM Knowledge
Component Study

Initial Assessment
- Fatigue tests
- Metallurgy
- Fracture mechanics

Uncertainty Assessment
- Usage
- Residual stress
- Etc.

Set t_1

Statistical Analysis

POD (ROC) Curve Generation

Validate Coupon Data

Rework
Accept

Decision

Set t_2

Inspection (in-service NDT)

Baseline subtraction

\hat{a}_0 threshold

Accept

Reject

\hat{a}_0

\hat{a}_1

â vs a Coupon Results for POD Curve Generation

Using Mil-Hdbk-1823 Methodology
Rapid Risk and Remaining Useful Life Assessment

CALM™ Services

Fracture Mechanics (Model-Based) Fuzzy HyperLattice

Rapid Uncertainty Estimator (t₁) (using precomputed databases)

Inspection (quality NDT & baseline)

Initial Assessment fatigue tests metallurgy Fracture mechanics

Uncertainty Assessment usage residual stress etc.

Set t₁

POD (ROC) Curve Generation

Crack Cluster Supervisor

Fleet Experience NDT results Failures Expert Input

Model Recalibrator (learning)

Fracture Mechanics (Model-Based) Fuzzy HyperLattice

Rapid Uncertainty Estimator (t₂) (using precomputed databases)

Statistical Analysis

Conditional Uncertainty Estimator

cdf(a)₁

cdf(a)₂

Fracture Mechanics (Model-Based)

Fuzzy HyperLattice

OEM Knowledge

Component Study

t₀

t₁

t₂

JENTEK® Sensors, Inc.

CALM™ Services
Component Adaptive Life Management

- POD curve generation for NDT & embedded sensors
- Risk assessment & RUL estimation
- Fleet transition support
- After market decision support

Images © JENETEK Sensors, Inc. 2013

Rapid Risk Assessment from NDT Data

Component Adaptive Life Management (CALM) software

Cumulative probability distributions for crack size at Time t_1

Cumulative probability distributions for crack size at Time t_2

Cumulative probability distributions for cycles remaining to reach critical crack size (0.08 in.)

Images © JENTEK Sensors, Inc. 2013
CH-53E Component Inspection

- Representative of in-service damage evolution
- Test repeatability and reliability
- Combine with coupon data to produce POD curves

Images © JENTEK Sensors, Inc. 2013
Development Milestones Completed

<table>
<thead>
<tr>
<th>Milestone</th>
<th>TRL</th>
<th>Risk</th>
<th>Measure of Success</th>
<th>TRL Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate reliable crack detection with MWM-Array on similar components (e.g., engine components)</td>
<td>9</td>
<td>Low</td>
<td>Federal Aviation Administration – Air Transport Association (FAA-ATA) Better Way Award: Fleet Readiness Center (FRC) standard practice</td>
<td>Jan 2008</td>
</tr>
<tr>
<td>Perform subcomponent demonstration</td>
<td>5</td>
<td>Moderate</td>
<td>Demonstrate improvement over conventional NDT</td>
<td>June 2009</td>
</tr>
<tr>
<td>Develop adaptive asset management approach</td>
<td>5</td>
<td>Moderate</td>
<td>Establish sufficient capability for target application</td>
<td>Oct. 2009</td>
</tr>
<tr>
<td>Adapt measurement and calibration methods for mapping & tracking</td>
<td>7</td>
<td>Moderate</td>
<td>Crack detection performance on coupons</td>
<td>Oct. 2012</td>
</tr>
<tr>
<td>Perform component fatigue test for actual rotorcraft dynamic component</td>
<td>7</td>
<td>Moderate</td>
<td>Crack detection and CALM performance on component</td>
<td>Nov. 2012</td>
</tr>
</tbody>
</table>
Next Steps

- Transition to Fleet for Target Applications
 - Deliver Mapping & Tracking solution to FRC
 - Record data for two years
 - Apply CALM and initiate life extension in 3rd year

- Partner with OEMs and FRCs
 - Transition numerous targeted life extension solutions

- Broaden CALM Services
 - Fleet-wide data analysis & life management
 - Fleetwide CBM+ services

CALM & MWM-Array
Reduced total ownership costs, ... Improve readiness and safety
Provided by JENTEK Sensors
Partners Sought

- **Program Office Support**
 - Further technology development
 - T&E for first CALM™ application
 - Transition to FRC-E and Navy depots

- **Partnerships and Customers**
 - Rotorcraft Primes
 - Sikorsky, Boeing and others
 - Army
Questions?

Come see us at Booth # A-416

Neil Goldfine, Ph.D., President

Phone: 781-642-9666
Email: jentek@jenteksnors.com
Website: www.jenteksnors.com