Composite NDT and SHM for Spacecraft and Aircraft, Using MWM-Arrays

Neil Goldfine, Andrew Washabaugh, David Jablonski, Zachary Thomas, and Christopher Martin

JENTEK Sensors, Inc.
110-1 Clematis Avenue, Waltham MA 02453
Phone: 781-642-9666; Email: jentek@shore.net
www.jenteksensors.com

April 5, 2012
Goals, Technical Approach and Funding

- **Goal** is to develop:
 - High resolution damage and condition imaging for carbon fiber composite NDT
 - Volumetric stress sensing magnetic stress gages for composites

- The **MWM-Array** is a linear drive eddy current sensor array construct
 - Can induce eddy currents in the linear fibers of carbon fiber composites
 - Use winding geometry changes to alter penetration depth and characterize damage

- **Detection/characterization** of impact and other damage and **monitoring of strain/stress** as a function of depth and fiber orientation is accomplished by modeling the fiber properties/orientation/density/contact. Simplified models are being used now with advanced models still under development.

- **Funding**
 - **NASA** for micromechanical model development and application to composite overwrapped pressure vessels (COPVs)
 - **Army** for rotorblade NDT
 - **Navy** for NDT of aircraft composites
Linear Drive Eddy Current Sensors

MWM® and MWM®-Arrays

Parallel Architecture Instruments: GS-Durable and GS-HandHeld
Micromechanical Model: Eddy Current Extension

(Model under development in NASA Phase II SBIR)

- Linear drive MWM-Array sensing of composite with conducting fibers and insulating matrix
- Model uses a composite cylinder assemblage
 - Solve for field around a single fiber and extend to fiber bundle
 - Effective complex permeability and conductivity depend upon orientation with respect to fiber axis, fiber density and fiber contact
- Focus on Carbon Fiber/Epoxy composites

Mathematical expression:

\[\mu_{\text{par}}^* \approx \mu_{\text{perp}}^* \approx \mu_0 \]
\[\sigma_{\text{perp}} \approx 0 \]
\[\sigma_{\text{par}} \approx \sigma_f v_f \]
Uniaxial/Biaxial Specimens: Orientation Varied

- Single element MWM sensor; 10 MHz
 - Air/shunt calibration
 - Sensor response highly directional
 - Highest response when fibers when sensor drive oriented parallel to fibers

Uniaxial specimens

Biaxial (±45°) specimens

Graphite fiber epoxy composite samples provided by Boeing

For the uniaxial specimen, both the magnitude and phase of the sensor response are significant every 180°

Signal Variation During Rotational Scan
Measurement Grids for Simplified Model

Example Grids for the MWM FS35 Sensor and Aluminum

- **MWM and MUT Model**
 - MWM Sensor
 - Lift-Off or Air Gap (h)
 - Material Under Test
 - Sensor Model Information
 - Electromagnetic (EM) Simulation
 - MUT Model Information

- **Measurement Grid**
 - Lift-Off
 - Conductivity

- **Example Grids**
 - 10 kHz
 - Phase (deg)
 - Magnitude (μH)
 - Lift-Off
 - Conductivity

- **Example Grids**
 - 1 MHz
 - Phase (deg)
 - Magnitude (μH)
 - Lift-Off
 - Conductivity
MWM Sensor Selection

- Magnetic field decays exponentially with distance away from sensor
 - Decay rate determined by skin depth at high freq. and sensor dimensions at low frequency
- High frequencies needed to induce significant eddy currents
- Large dimensions needed for thick composites

\[
\delta = \sqrt{\frac{1}{\pi f \mu \sigma}}
\]
Quasi-isotropic Composite Panel Stackup

- **Stackup for bending test panel**
 - Uniaxial properties for each layer

- **MWM-Array sensitive to composite layers with fibers oriented parallel to drive windings**

- Composite layer considered insulating if fibers NOT within 5° of sensor orientation

- This visualization indicates that each sensor orientation is only sensitive to a subset of plies at varying depths within the composite.
Simplified Grids for Quasi-isotropic Stackup

Grid size illustrates the effect of fiber orientation and distance from the sensor

- **FS33**
- **FS36/BD-MSG**

- The plots compare standard infinite half space grid to parameterized grids for each sensor orientation
- Sensitivity to a subset of plies causes a shift in effective property estimates compared to standard grids
- Smaller effective conductivities; effective lift-off can be high, lower, even negative, depending upon orientation
Example COPV Stackup

- Stackup for COPV and COPV ring specimen
- MWM-Array sensitive to composite layers with fibers oriented parallel to drive windings
- This indicates that the sensor orientation is important for assessing the fiber properties.

<table>
<thead>
<tr>
<th>Orientation</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-fiber orientation</td>
<td></td>
</tr>
<tr>
<td>±17° or ±18° orientation</td>
<td></td>
</tr>
<tr>
<td>±90° orientation</td>
<td></td>
</tr>
<tr>
<td>±60° orientation</td>
<td></td>
</tr>
</tbody>
</table>
JENTEK Grids for MWM-Array on COPV Samples

- Representative grids for a composite overwrapped pressure vessel (COPV)
- Models account for layered geometry and orientation effects on properties within each layer
Segmented Field Magnetometry

- Different sensor geometries provide different penetration depths
- **Segmented field sensors** such as FA41 can provide two depths in a single scan
- Depth of sensitivity variation needed to characterize damage variation with depth
- **Frequency variation alone is not sufficient**

\[
\delta = \sqrt{\frac{1}{\pi f \mu \sigma}}
\]
Approach to Volumetric Imaging

Combination of sensor orientation and geometry can help isolate depth and region of damage: (i) sensor orientation determines plies, (ii) sensor geometry determines depth of sensitivity, (iii) spatial extent of damage determined from scan image.
Volumetric Imaging of Composite Impact Damage

Sample provided courtesy of Lockheed Martin

Representative MWM-Array Scan Image
Representative Quasi-isotropic Panel Scan Images

Before Impact | After Impact | Subtracted | Subtracted and Smoothed

5 MHz

10 MHz

15.8 MHz
Summary Image
Individual scans combined together to create composite cross-sectional view
Cross Sectional Images: Panel 1, Low Impact Level

MWM-Array FA28 Data

Cross Sectional View along X-axis

Cross Sectional View along Y-axis
Cross Sectional Images: Panel 2, Medium Impact Level

MWM-Array FA28 Data

Cross Sectional View along X-axis

Cross Sectional View along Y-axis
Cross Sectional Images: Panel 3, High Impact Level

MWM-Array FA28 Data

Cross Sectional View along X-axis

Cross Sectional View along Y-axis
COPV Testing

See complimentary presentation:

Session:
IVHM - Structural Health Monitoring for Damage Detection
Presentation time:
Thursday, April 05, 2012
2:30 PM
Rotation Scan of Vessels AC-5250 S/N:030

FA28 MWM-Array Scan
- Shallow
 \(\lambda/4 = 37 \text{ mils} \)
- Deeper
 \(\lambda/4 = 130 \text{ mils} \)

FA24 MWM-Array Scan

Manufacturer Fiber Layup

<table>
<thead>
<tr>
<th>Fiber orientation</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5 (^\circ)</td>
<td>Carbon fiber composite</td>
</tr>
<tr>
<td>19.5 (^\circ)</td>
<td>Carbon fiber composite</td>
</tr>
<tr>
<td>072 (^\circ)</td>
<td>Carbon fiber composite</td>
</tr>
<tr>
<td>90 (^\circ)</td>
<td>Carbon fiber composite</td>
</tr>
<tr>
<td>90 (^\circ)</td>
<td>Glass fiber composite</td>
</tr>
</tbody>
</table>
MWM-Array Low Freq. Lift-Off Scans on COPV

Lift-Off image shows liner damage; freq. 50.11 kHz

- Sample AC5250-030; 90° Sensor drive orientation
- Higher impact energy results in larger dents in the aluminum liner
- Sensor: MWM-Array FA24
Periodic Response to Woven Plies

- FA28 scanned over a Gr/Ep composite with a coarse woven fabric ply near the surface.
- The spatially periodic sensor response is consistent with the woven fabric tow width:
 - Distance between peaks ~0.09-in.
 - This corresponds to 11 oscillations/in.
- Power spectrum density plot indicates strong spatial frequency near 11/in.

[Image of power spectrum density plot]

[Image of photograph of specimen]

Magnitude of 1 channel with photograph of specimen.
MWM Response to Stress in 4pt Bending
Unidirectional Carbon Fiber Composite

FA28 Tension

FA28 Compression

As presented at NASA Sensors Tech Forum Boston, MA; October 10-12, 2011
Surface-Mounted Sensor Damage Monitoring

Tests run under NAVAIR SBIR at Lockheed Martin Aeronautics, Ft. Worth, TX
Review: Goals, Technical Approach and Funding

- **Goal** is to develop:
 - High resolution damage and condition imaging for carbon fiber composite NDT
 - Volumetric stress sensing magnetic stress gages for composites

- The **MWM-Array** is a linear drive eddy current sensor array construct
 - Can induce eddy currents in the linear fibers of carbon fiber composites
 - Use winding geometry changes to alter penetration depth and characterize damage

- **Detection/characterization** of impact and other damage and monitoring of strain/stress as a function of depth and fiber orientation is accomplished by modeling the fiber properties/orientation/density/contact. Simplified models are being used now with advanced models still under development.

- **Funding**
 - NASA for micromechanical model development and application to composite overwrapped pressure vessels (COPVs)
 - Army for rotorblade NDT
 - Navy for NDT of aircraft composites
Questions?

JENTEK® Sensors, Inc.

Phone: 781-642-9666
Email: jentek@shore.net
Website: www.jenteksnors.com