Modeling and Visualization for Imaging of Subsurface Damage

Neil Goldfine, Scott Denenberg, Brian Manning, Zachary Thomas
JENTEK Sensors, Inc., 110-1 Clematis Avenue, Waltham, MA 02453-7013

Rasheed Al Rushaid, Frederick Haught
Al Rushaid Technologies Co., Al Turki Business Park, Office Villa #4; 7244 King Saud Road, Ad Doha Al Janubiyah, Dhahran 34455, Kingdom of Saudi Arabia
Outline

- Practical Applications
- Problem Definitions: *From Simple to Complex*
- Sensing Methodology
- HyperLattice Databases
- Example Results
- Summary
Practical Applications

1. Internal and external corrosion imaging through
 - Insulation
 - Concrete with wire mesh (fireproofing, weight coat)
 - Other coatings
2. Hydrogen blister imaging (*through cladding overlay*)
3. Buried crack detection
4. Coating characterization
5. In-line inspection for surface and subsurface defects
6. Stress mapping from outside and inside pipelines, structures
Problem Definitions: from simple to complex

(a) h (lift off)

μ (permeability)
σ (conductivity)

(b) Δ_{Coating}

σ

(c) Coating layer

(d) Δ_g

σ_v, μ_v

(e) MWM-Array

Near Side Corrosion

(f) MWM-Array

Δ_i

Δ_p

$\Delta_{\text{wj}}, \sigma_{\text{wj}}$

Insulation and Weather Jacket

(g) MWM-Array

μ_{mesh}

Insulation and Weather Jacket

h_i

h_o

h

h_o

h_i
Sensing Methodology

1. Sensors: MWM®-Arrays
 - Paradigm shift in sensor design (first priority is predictable response based on physics-based modeling)

2. Next Generation Electronics
 - 10x signal-to-noise improvement
 - Very low frequencies (deep penetration)
 - Crack detection through up to 0.5 inches of material
 - Reduced drift

3. GridStation Software using HyperLattices®
 - Rapid, autonomous data analysis
 Performs multivariate inverse method (MIM) using precomputed databases
 - Defect Images
 - Performance Diagnostics
 - Noise Suppression
Definition of Real and Imaginary Parts of the complex Transimpedance $Z = v/j\omega$

- $|Z| = \sqrt{\text{Re}^2 + \text{Im}^2}$
- $\theta = \arctan(\text{Im}/\text{Re})$
- $\text{Re} = |Z| \sin(\theta)$
- $\text{Im} = |Z| \cos(\theta)$

- GridStation Lattices for MR-MWM-Array wall loss imaging
- Used for external and internal wall loss imaging

$\omega = 2\pi f$
HyperLattices (precomputed response databases)

a) 2- Unknowns: conductivity (σ) and lift-off (h), with magnetic permeability (μ) assumed constant

![Graph of Log(σ) vs. phase (degrees) with measurement and estimation for various materials like Brass and Aluminum with conductivity values of 1.6E7 mhos/m and 3.2 E7 mhos/m, and frequency of 100 kHz at 12.7 mm wavelength.]

![Complex plane graph showing 125.8 kHz, Chan 14 - Imaginary vs. Real (Analysis Grid, 125.8 kHz) with lines indicating Conductivity and Lift-off.]

MWM-Array

- μ (permeability)
- σ (conductivity)

Lift-Off (h)
HyperLattices (precomputed response databases)

a) 2- Unknowns: magnetic permeability (μ) and lift-off (h), with conductivity (σ) assumed constant
b) 3- Unknowns: coating conductivity, coating thickness, and lift-off, using hierarchical method. Grid is for conductivity and thickness of the coating. The lift-off is determined at a higher frequency, taken simultaneously.
HyperLattices (precomputed response databases)

c) 3-Unknowns: coating thickness, coating conductivity, and lift-off. Two frequencies are needed.

Each frequency provides two equations to solve for up to two unknowns. Two frequencies is enough for 3 or 4 unknowns.
HyperLattices (precomputed response databases)

d) 3- Unknowns: cladding thickness, blister gap, and lift-off
HyperLattices (precomputed response databases)

e) 3- Unknowns: pipe wall permeability, pipe wall thickness, and lift-off

10,00 Hz - Imaginary vs. Real (multiple grids)

- Thickness
- Real (Re)
- Imaginary (Im)
- Lift-Off (h)
- Permeability (μ)
- MWM sensor
- MWM-Array
- Near Side Corrosion
- Far Side Corrosion
Scanners and Implementation in the plant

\[h, \Delta_wj, \Delta_i, \Delta_p, \mu_p \]

- \(h_o \): distance between sensor & external surface of weather jacket
- \(\Delta_{wj} \): weather jacket thickness
- \(\Delta_i \): insulation thickness + external metal loss
- \(\Delta_p \): remaining pipe wall thickness
- \(\mu_p \): pipe magnetic permeability
Sensor Selection

- Decay rate determined by skin depth at high frequency and sensor dimensions at low frequency
- Large dimensions needed for thick coatings/insulation
- Low frequencies needed to penetrate through steel pipe wall

MR-MWM-Array

Depth of Penetration = $1/\text{Re}(\Gamma_n)$

Low Frequency Limit = $\frac{\lambda}{2\pi}$

$\Gamma_n = \sqrt{(2\pi n / \lambda)^2 + j2 / \delta^2}$

Skin depth: $\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$

1 inch = 25.4 mm
HyperLattices (precomputed response databases)

(f, left) 5- Unknowns:
1. pipe wall permeability,
2. pipe wall thickness,
3. weather jacket thickness (assume conductivity)
4. insulation thickness
5. lift-off (distance to weather jacket)

Can’t visualize easily
Example: Corrosion Imaging on Refinery Piping

Inspection was performed with the pipe in production at high temperature.
Internal Corrosion – Sample A
16” Schedule 80 (0.500” wall)
2” insulation with aluminum weather jacket
0.175” max wall loss (35%) over 20-25 inches (full circumference)

Internal Corrosion – Sample B
16” Schedule 80 (0.500” wall)
2” insulation with aluminum weather jacket
0.100” max wall loss (20%) over 20-25 inches (full circumference)
HyperLattices (precomputed response databases)

(f, right) 5- Unknowns:
1. vessel wall permeability,
2. vessel wall thickness,
3. permeability and position of wire mesh (simple layer)
4. vessel wall permeability
5. vessel wall permeability

Can’t visualize easily
Summary

1. Internal and external corrosion imaging through
 - Insulation
 - Concrete with wire mesh (fireproofing, weight coat)
 - Other coatings

2. Hydrogen blister imaging (through cladding overlay)

3. Buried crack detection

4. Coating characterization

5. In-line inspection for surface and subsurface defects

6. Stress mapping from outside and inside pipelines, structures